top of page

Publications

Articles 

67. A new methodology for preparing benzylated aminopyridines yields unprecedented site-selective organocatalysts. Mikhail Kozlov, Fatma Saady, Or Fleischer, Shai Ben Sasson, Ibrahim Amer*, Scott J. Miller and Moshe Portnoy*. ChemRxiv, 2024https://chemrxiv.org/engage/chemrxiv/article-details/674c7c04f9980725cfafeee7.

66. Tunning the structure of 4-aminopyridine catalysts for improved activity and selectivity in functionalization of alcohols. Fatma Saady, Tom Targel, Or Fleischer, Ibrahim Amer* and Moshe Portnoy*. ChemestrySelect, 9(2), 2024, e202304502.

65. Similarities and differences between site-selective acylation and phosphorylation of amphiphilic diols promoted by nucleophilic organocatalysts decorated with outer-sphere appendages. Or Fleischer, Tom Targel, Fatma Saady and Moshe Portnoy*. Catalysts, 13(2), 2023, No. 361.

GA 65_edited.jpg

64. Improving site selectivity in phosphorylation of amphiphilic diols through catalyst design. Amit Fallek, Or Fleischer, Fatma Saady and Moshe Portnoy*. Eur. J. Org. Chem., 2022(46), 2022, e202201089.

63. Controlling the site selectivity in acylations of amphiphilic diols: directing the reaction toward the apolar domain in a model diol and midecamycin A1 macrolide antibiotic. Reut Fallek, Natali Ashush, Amit Fallek, Or Fleischer, and Moshe Portnoy*. J. Org. Chem, 87(15), 2022, 9688-9698.

GA 63.jpg

62. Goldilocks effect of base strength on site selectivity in acylation of amphiphilic diols. Reut Fallek, Natali Ashush, Amit Fallek and Moshe Portnoy*. Synlett, 32(18), 2021, 1849-1854.

GA 62.jpg

61. Baeyer-Villiger-including domino two-step oxidations of beta-O-substituted primary alcohols: reflection of the migratory aptitudes of O-substituted alkyl group in the outcome of the reaction. Tom Targel and Moshe Portnoy*. Catalysts, 10(11), 2020, No. 1275.

GA 61.jpg

60. Phosphorylation organocatalysts highly active by design. Amit Fallek, Mor Weiss-Shtofman, Maria Kramer, Roman Dobrovetsky* and Moshe Portnoy*. Org. Lett., 22(9), 2020, 3722-3727.

GA 60.jpg

59. Base- and catalyst-induced orthogonal site selectivities in acylation of amphiphilic diols. Natali Ashush, Reut Fallek, Amit Fallek, Roman Dobrovetsky and Moshe Portnoy*. Org. Lett., 22(10), 2020, 3749-3754.

GA 59.jpg

58. A novel specific PERK activator reduces toxicity and extends survival in Huntington's disease models. Javier Ganz, Talya Shacham, Maria Kramer, Marina Shenkman, Hagit Eiger, Nitai Weinberg, Ori Iancovici, Somnath Roy, Luba Simhaev, Benny Da’adoosh, Hamutal Engel, Nisim Perets, Yael Barhum, Moshe Portnoy, Daniel Offen and Gerardo Z. Lederkremer*. Sci. Rep., 10(1), 2020, 6875.

57. The use of Lewis acids for repairing chemoselectivity of the organocatalyzed Morita-Baylis-Hillman reaction. Amit Fallek and Moshe Portnoy*. ChemistrySelect, 4(11), 2019, 3175-3179.

GA 57.jpg

56. Domino two-step oxidation of beta-alkoxy alcohols to hemiacetal esters: linking a stoichiometric step to an organocatalytic with a common organic oxidant. Tom Targel, Palakuri Ramesh and Moshe Portnoy*. Eur. J. Org. Chem., 2018(23), 2018, 3017-3021.

GA 56.jpg

55. Finding lead catalytic systems for a rare version of enantioselective Robinson annulation: integration of fluorogenic assays in the catalyst screening. Yael Shiloni and Moshe Portnoy*. ACS Omega, 2(10), 2017, 7253-7266.

GA 55.jpg

54. Design and synthesis of BODIPY-cored near IR-emitting lipophilic and water-soluble dendritic platforms. Palakuri Ramesh, Jeny Karabline-Kuks, Mor Weiss-Shtofman and Moshe Portnoy*. ChemistrySelect, 2(10), 2017, 3093-3098.

GA 54.jpg

53. Chemoselectivity improvement via partial shielding of an imidazole active site in branched/dendritic homogeneous catalysts of the Baylis-Hillman reaction. Jeny Karabline-Kuks, Palakuri Ramesh and Moshe Portnoy*. Adv. Synth. Catal., 358(22), 2016, 3541-3554.

GA 53.jpg

52. Multivalency as a key factor for high activity of selective supported organocatalysts for the Baylis-Hillman reaction. Kerem Goren, Jeny Karabline-Kuks, Yael Shiloni, Einav Barak-Kulbak, Scott J. Miller*  and Moshe Portnoy*. Chem. Our. J., 21(3), 2015, 1191-1197.

GA 52.jpg

51. Advantages of polymer-supported multivalent organocatalysts for the Baylis-Hillman reaction over their soluble analogues. Einav Barak-Kulbak, Kerem Goren and Moshe Portnoy*. Pure Appl. Chem., 86(11), 2014, 1805-1818.

50. Reversible multistep synthesis with equilibrium properties, based on selection-oriented process with repetitive sequence of steps. Sagi Eppel* and Moshe Portnoy. J. Phys. Chem. B, 118(32), 2014, 9733-9744.

GA 50.png

49. Elucidating factors leading to acidolytic degradation of sterically strained oligoether dendrons. Jeny Karabline-Kuks, Amit Fallek and Moshe Portnoy*. Org. Biomol. Chem., 12(30), 2014, 5621-5628.

GA 49.png

48. A novel analog of olanzapine linked to sarcosinyl moiety (PGW5) demonstrates high efficacy and good safety profile in mouse models of schizophrenia. Irit Gil-Ad, Moshe Portnoy, Igor Tarasenko, Miri Bidder, Maria Kramer, Michal Taler and Abraham Weizman*. Eur. Neurophsychopharm., 24(3), 2014, 425-436.

47. One-pot esterification-click (CuAAC) and esterification-acetylene coupling (Glaser/Eglinton) for functionalization of Wang polystyrene resin. Sagi Eppel* and Moshe Portnoy*. Tetrahedron Lett., 54(37), 2013, 5056-5060.

GA 47.png

46. Solid-phase synthesis and acidolytic degradation of sterically congested oligoether dendrons. Jeny Karabline and Moshe Portnoy*. Org.Biomol. Chem., 10(24), 2012, 4788-4794.

GA 46 .tiff

45. Polymer-supported enantioselective bifunctional catalysts for nitro-Michael addition of ketones and aldehydes. Lital Tuchman-Shukron, Scott J. Miller and Moshe Portnoy*. Chem. Eur. J., 18(8), 2012, 2290-2296.

GA 45.jpg

44. Effects of dendritic interface on enantioselective catalysis by polymer-bound prolines. Tzofit Kehat, Kerem Goren and Moshe Portnoy*. New J. Chem., 36(2), 2012, 394-401.

GA 44.png

43. A unique paradigm for a turn-ON near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide. Naama Karton-Lifshin, Ehud Segal, Liora Omer, Moshe Portnoy, Ronit Satchi-Fainaro* and Doron Shabat*. J. Am. Chem. Soc., 133(28), 2011, 10960-10965.

GA 43.gif

42. Solid-phase synthesis of uniform linear oligoethers with repeating functional arms as multivalent spacers. Liat Spasser and Moshe Portnoy*. J. Polym. Sci. Part A: Polym. Chem., 48(24), 2010, 6009-6013.

GA 42.jpg

41. Supported N-alkylimidazole-decorated dendrons as heterogeneous catalysts for the Baylis-Hillman reaction. Kerem Goren and Moshe Portnoy*. Chem. Commun., 46(11), 2010, 1965-1967.

GA 41.png

40. Polymer-supported highly enantioselective catalyst for nitro-Michael addition: tuning through variation of the number of H-bond donors and spacer length. Lityal Tuchman-Shukron and Moshe Portnoy*. Adv. Synth. Catal., 351(4), 2009, 541-546.

GA 40.jpg

39. Cyclic 2:1 and 1:2 aldehyde-to-acetone byproduct adducts in aldol reaction promoted by supported proline-incorporated catalysts. Little Tuchman-Shukron, Tzofit Kehat and Moshe Portnoy*. Eur J. Org. Chem., 2009(7), 2009, 992-996.

GA 39.jpg

38. Elucidation of architectural requirements from a spacer in supported proline-based catalysts of enantioselective aldol reaction. Kerem Goren, Tzofit Kehat and Moshe Portnoy*. Adv. Synth. Catal., 351(1-2), 2009, 59-65.

GA 38.png

37. Dendritic effects in catalysis by Pd complexes of bidentate phosphines on dendronized support: Heck vs. carbonylation reactions. Amal Mansour, Tzofit Kehat and Moshe Portnoy*. Org. Biomol. Chem., 6(18), 2008, 3382-3387.

GA 37.png

36. Dendrons on insoluble supports: synthesis and applications. (Perspective – invited review). Tzofit Kehat, Kerem Goren and Moshe Portnoy*. New J. Chem, 31(7), 2007, 1218-1242.

GA 36.tiff

35. Polymer-supported proline-decorated dendrons: dendritic effect in asymmetric aldol reaction. Tzofit Kehat and Moshe Portnoy*. Chem. Commun., 2007(27), 2007, 2823-2825.

GA 35.jpg

34. Pd catalysis on dendronized solid support: generation effects and the influence of the backbone structure. Adi Dahan and Moshe Portnoy*. J. Am. Chem. Soc., 129(18), 2007, 5860-5869.

GA34.jpg

33. Efficient heterogeneously catalyzed aminocarbonylation of bromoarenes based on serinol-derved diphosphine ligand. Amal Mansour and Moshe Portnoy*. J. Mol. Catal. A: Chemical, 250(1-2), 2006, 40-43.

GA 33.jpg

32. Solid-phase synthesis of pyrrolidines via 1,3-dipolar cycloaddition of azomethine ylides generated by the decarboxylative route. Batia Bar-Nir Ben-Aroya and Moshe Portnoy*. Heterocycles, 67(2), 2006, 511-518.

GA 32.jpg

31. Dendrons and dendritic catalysts immobilized on solid support: synthesis and dendritic effects in catalysis. (Highlight – invited review). Adi Dahan and Moshe Portnoy*. J. Polym. Sci. Part A: Polym. Chem., 43(2), 2005, 235-262.

GA 31.png

30. The first solid-phase synthesis of bis(oxazolinyl)pyridine ligands. Avi Weissberg, Baruch Halak and Moshe Portnoy*. J. Org. Chem., 70(11), 2005, 4556-4559.

GA 30.jpeg

29. Synthesis of tetrafurcated dendritic units on solid support. Adi Dahan, Hemi Dimant and Moshe Portnoy*. J. Comb. Chem., 6(3), 2004, 305-307.

GA 29.gif

28. Unprecedented preparation of pincer bis(oxazolinyl)phenyl ligands on solid support and their use in the first heterogeneously-catalyzed enantioselective allylation of aldehydes. Avi Weissberg and Moshe Portnoy*. Chem. Commun., 2003(13), 2003, 1538-1539.

GA 28.jpeg

27. Preparation of novel polythioether dendrons on solid support. Adi Dahan, Avi Weissberg and Moshe Portnoy*. Chem. Commun., 2003(10), 2003, 1206-1207.

GA 27.jpeg

26. A remarkable dendritic effect in the polymer-supported catalysis of the Heck arylation of olefins. Adi Dahan and Moshe Portnoy*. Org. Lett., 5(8), 2003, 1197-1200.

GA 26.gif

25. Synthesis of a diverse set of phosphorus ligands on solid support and their screening in the Heck reaction. Amal Mansour and Moshe Portnoy*. Tetrahedron Lett., 44(10), 2003, 2195-2198.

GA 25.jpg

24. Synthesis of poly(aryl-benzyl ether) dendrimers on solid support. Adi Dahan and Moshe Portnoy*. Macromolecules, 36(4), 2003, 1034-1038.

23. Dendritic effect in polymer-supported catalysis of intramolecular Pauson-Khand reaction. Adi Dahan and Moshe Portnoy*. Chem. Commun., 2002(22), 2002, 2700-2701.

GA 24.jpeg

22. Preparation of alpha-aminophosphines on solid support: model studies and combinatorial synthesis. Batia Bar-Nir Ben-Aroya and Moshe Portnoy*. Tetrahedron, 58(25), 2002, 5147-5158.

GA 22.gif

21. Direct conversion of esters to hydroxyamides on solid support – a key step en-route to bis-oxazoline ligands. Avi Weissberg and Moshe Portnoy*. Synlett, 2002(2), 2002, 247-250.

20. Solid-phase parallel synthesis of an alpha-aminophosphine library. Batia Bar-Nir Ben-Aroya and Moshe Portnoy*. J. Comb. Chem., 3(6), 2001, 524-527.

GA 20.gif

19. Synthesis of homo- and heteroprotected furcated units for modular chemistry. Adi Dahan and Moshe Portnoy*. J. Org. Chem., 66(19), 2001, 6480-6482.

GA 19.gif

18. Williamson ether synthesis on solid support: substitution versus elimination. Avi Weissberg, Adi Dahan and Moshe Portnoy*. J. Comb. Chem., 3(2), 2001, 154-156.

GA 18.gif

17. Synthesis and characterization of beta-aminophosphines on solid support. Amal Mansour and Moshe Portnoy*. Perkin Trans. 1, 2001(9), 2001, 952-954.

GA 17.jpeg

16. Addition of borane-protected secondary phosphines to imines. A route to protected mono-N-substituted-alpha-aminophosphines. Batia Bar-Nir Ben Aroya and Moshe Portnoy*. Tetrahedron Lett., 41(32), 2000, 6143-6147.

15. Propargyl alcohols as synthons for allenols in conjugate addition. Barry M. Trost*, Lars Krause and Moshe Portnoy. J. Am. Chem. Soc., 119(46), 1997, 11319-11320.

14. A Ru catalyzed three-component addition to form 1,5-diketones. Barry M. Trost, Moshe Portnoy, and Hideki Kurihara. J. Am. Chem. Soc., 119(4), 1997, 836-837.

13. Amperometric transduction and amplification of optical signals recorded by a phenoxynaphthacenequinone monolayer electrode: photochemical and pH-gated electron transfer. Amihood Doron, Moshe Portnoy, Mazzi Lion-Dagan, Eugenii Katz and Itamar Willner*. J. Am. Chem. Soc., 118(37), 1996, 8937-8944.

12. An electroactive photoisomerizable monolayer-electrode: a command surface for the amperometric transduction of recorded optical signals. Amihood Doron, Eugenii Katz, Moshe Portnoy,  and Itamar Willner*. Angew. Chem. Int. Ed., 35(13-14), 1996, 1535-1537.

11. Formation of P-C chelated palladium complexes by phosphine-assisted oxidative addition of an aliphatic C-Cl bond. Moshe Portnoy, Yehoshua Ben-David and David Milstein*. J. Organomet. Chem., 503(1), 1995, 149-153.

10. Reactions of electron-rich aryl-palladium complexes with olefins. The origin of chelate effect in vinylation catalysis. Moshe Portnoy, Yehoshua Ben-David, Itay Rousso  and David Milstein*. Organometallics, 13(9), 1994, 3465-3479.

9. A binuclear Pd(I) hydride. Formation, reactions and catalysis. Moshe Portnoy and David Milstein*. Organometallics, 13(2), 1994, 600-609.

8. Clarification of a remarkable chelate effect leads to Pd-catalyzed base-free olefin arylation. Moshe Portnoy, Yehoshua Ben-David and David Milstein*. Organometallics, 12(12), 1993, 4734-4735.

7. Mechanism of aryl chloride oxidative addition to chelated Pd(0) complexes. Moshe Portnoy and David Milstein*. Organometallics, 12(5), 1993, 1665-1673.

6. Chelate effect on the structure and reactivity of electron-rich palladium complexes and its relevance to catalysis. Moshe Portnoy and David Milstein*. Organometallics, 503(1), 1995, 1655-1664.

5. Palladium-catalyzed vinylation of aryl chlorides. Chelate effect in catalysis. Yehoshua Ben-David, Moshe Portnoy, Michael Gozin and David Milstein*. Organometallics, 11(6), 1992, 1995-1996.

4. Reductive dechlorination of aryl chlorides catalyzed by palladium complex containing basic, chelating phosphines. Yehoshua Ben-David, Michael Gozin, Moshe Portnoy and David Milstein*. J. Mol. Catal., 73(2), 1992, 173-180.

3. Methanol reduces an organopalladium (II) complex to a palladium (I) hydride. Crystallographic characterization of a hydride-bridged palladium complex. Moshe Portnoy, Felix Frolow and David Milstein*. Organometallics, 10(12), 1991, 3960-3962.

2. Formylation of aryl chlorides catalyzed by a palladium complex. Yehoshua Ben-David, Moshe Portnoy and David Milstein*. J. Chem. Soc., Chem. Commun., 1989(23), 1989, 1816-1817.

1. Chelate-assisted, Pd-catalyzed efficient carbonylation of aryl chlorides. Yehoshua Ben-David, Moshe Portnoy and David Milstein*. J. Am. Chem. Soc., 111(23), 1989, 8742-8744.

Books and Book Chapters

1. Solid-phase dendron synthesis and applications.   Kerem Goren and Moshe Portnoy*. In “Solid-Phase Organic Synthesis: Concepts, Strategies and Applications”, eds. P. H. Toy and Y. Lam., Wiley-VCH, 2012, ch. 15, pp. 441-487.

Contact Us

Prof. Moshe Portnoy

School of Chemistry,

Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University,

Tel Aviv, 6997801, Israel

Office Location: Shenkar Chemistry Building, Room 209

Office Phone: +972-3-6406517

E-mail: portnoy@tauex.tau.ac.il

© 2023 by Tel Aviv University. Proudly created with Wix.com

bottom of page